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Higher-order organization of
complex networks

Anstin R. Benson," David F. Gleich,” Jure Leskover™

science 2016

in instances of M that reside in S Equation 1§ a
generalization of the conductance metric in spee-
tral graph theory, one of the most useful graph
partitioning scores (17). We refer 10 d5(S) as the
motif conductance of § with respect to M.
Finding the exact set of nodes § that minimizes

Idea: a generalized framework

a tool for systemns in physics,

for clustering networks on the e e e

edges. However, higher-order organization of complex networks—at the level of small network
subgrapits—remairs largely unknown. Here, we develop a generaiized framowork for clustering

basis of higher-order connectivity
patterns

networks on the

patterns.
on the of obtained clusters and scales to networks with

billions of edgges. The framework reveals higher-order organization in a number of networks,

including information

“The resulting method maintains the properties of

efficiency, ease of implementation, and mathesmati-
u]guammn on the near-optimality of obtained

networks. Results show that networks exhibit rich higt
that are exposed by clustering based on higher-order connectivity patterns.

etworks ion of

data throughout the sciences, and higher-

order connectivity patterns are essential o

understanding the fundamental structures

that control and mediate the behavior of
many complex systems (1-7). The most common
higher-order structures ar: small network sub-
graphs, which we refir

the following ratio:

4 (S) = eutar(S,5) /min[vols (S), volu (5]
m
where 5 denotes the remainder of the nodes (the

lxlmplemenl of 5), culy(S5) is the number of
L of motif 3 with al least one node in §

(Fig 1A).
Network motifs are considered building blocks
for complex networks (1, &). For example, feed-
forward loops (Fig. 1A, M) have proven funda-
mental to rmderstanding transcriptional regulation
networks (9); triangular motifs (Fig. 14, M,-M;) are
crucial for social networks (£); open bidirectional
wedges (Fig. 1A, M) are key to structural hubs
in the brain (70); and two-hop paths (Fig. 14,
My—M,) are essential to understanding air traf-
fic patterns (5). Although network motifs have
been recognized as fundamental units of net-
‘works, the higher-order organization of networks
at the level of network motifs largely remains an
open question.
Here, we use higher-order network structures
o gain new insights into the organization of com-

‘may be revealed (Fig. 1), which means that dif-

ferent organizational patterns are exposed, de-
pexdiing on the ehosen ok,

Conceptually, given a network motif M, our

searches for a cluster of nodes S with

two goals. First, the nodes in 8 should participate

and onein 5, and voly, (5) is the number of nodes

custers. the clusters identified by our

higher-order dustering
Cheeger inequality (14), which means that our
optimization framework finds chusters that arcat
most & quadratic factor away from optimal

The algorithm (illustrated in Fig. 1C) efficiently
identifies a cluster of nodes 5 as follows:

= Step 1: Given a network and a motif M of
interest, form the motif adjacency matrix Wiy
whose entries (i, 7) are the co-occurrence counis
of nodes { and j in the motif M: (W)y = number
of instances of M that contain nodes £ and j.
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Local Higher-Order Graph Clustering ‘% SRICIRISE

Idea : incorporating higher-order network information captured by small
subgraphs, also called network motifs (constructing new matrix). And they
develop the Motif-based Approximate Personalized PageRank (MAPPR) algorithm

that finds clusters containing a seed node with minimal motif conductance.

M, M, M3
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4 edges cut 1 motif cut

20 edge end points 11 motif end points
edge conductance = 4/ 20 motif conductance = 1/ 11
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detection

Idea: The random walker starts on an initial node and moves to a neighboring

node based on the probabilities of the connecting edges. If the walker goes into a

dense region, it would be hard to get out of the region.

Method:
» constructing transition matrix
» getting pagerank value(V}.) for each nodes

» if V. /W, > threshold for each node: collecting the node, where W, is the weight of a

node

Ref: Peng W, Wang J, Zhao B, et al. Identification of protein complexes using weighted pagerank-nibble algorithm
and core-attachment structure[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015,
12(1): 179-192
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Idea: traditional methods to find graph cut just consider connectivity between
nodes but higher network structures. In this paper, authors focus on mining user-
specified high-order network structures and aim to find a structure-rich subgraph
which does not break many such structures by separating the subgraph from the

rest.

| N | Example ‘ Iustration ‘Markov Chajn|

15t-order Vertex oth-order

Method: adjacent matrix = adjacent tensor.

27d_order Edge 15'-order

Pagerank to find graph cut.

34_order 3-node Line

20d_order
Triangle
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——Hong Kong University, Stanford, v
Huawei Noah’s Ark Lab

Idea: like a process of diffusion, and provide a worst-case upper bound of
replication factor for their heuristic on general graphs.

Proving : balabalabala~~~~
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struc2vec: Learning Node Representations from l@ 3 R

Idea: a novel and flexible framework for learning latent representations
for the structural identity(structural similarity) of nodes. struc2vec uses a
hierarchy to measure node similarity at different scales, and constructs a
multilayer graph to encode structural similarities and generate structural

context for nodes.

A tiny example(aren’t serious)




Structural Identity Data Mining Lab
——Leonardo et. al

struc2vec: Learning Node Representations from l@ 3 R

Steps:

» Measuring structural similarity
Two nodes that have the same degree are structurally similar, but if their

neighbors also have the same degree, then they are even more
structurally similar. (DTW fr(u,v))

» Constructing the context graph

Let M denote the multilayer graph where layer k is defined using the k-hop

neighborhoods of the nodes.

same layer: wy(u,v) = e feo) . —o . k* (undirected graph)

neighboring layers : w(ug,ur,;) = log(T(u) +e), k=0,...,k*—1 (directed graph)
wlug,up_1)=1, k=1,...,k"

Uy, Uk 411S corresponding vertex in layer k and k+1




Structural Identity Data Mining Lab
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struc2vec: Learning Node Representations from l@ 3 R

» Constructing the context graph
Te() = > 1(wi(u,v) > W)

veV

Where T, (u) is number of edges incident to u that have weight larger than the average
edge weight of the complete graph in layer k. Note that if u has many similar nodes in
the current layer, then it should change layers to obtain a more refined context.

» Generating context for nodes

Random walk: start a node in layer 0. Random walks have a fixed and relatively short
length (number of steps), and the process is repeated a certain number of times, giving
rise to multiple independent walks. Finally, the context is generated by the process.




. L M HiRSIESIS=
Unsupervised Feature Selection in Signed Social \ J Data Mining Lab

Networks ——Kewei Chenget. al

Scenario: nodes with features(attribution) are connected by positive link and
negative link. How to select ?

Idea: these latent representations encode the signed network structure which
selected feature should preserve. In my word, the relationship between features
and topology are consist. Then, the node latent representations can guide feature

selection
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Networks ——Kewei Chenget. al

Step 1: collectively factorizing AP and A™
into a unified low-rank representation U

min Y0P o (AP-UVPU’)|%+B ||O" (A" -UV"U')|1%,
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Networks ——Kewei Chenget. al

Step 2: leveraging the user latent representations U to guide
feature selection via a multivariate linear regression model.

. 2
min IXW = Ul + a[|W]l2,1.

Where X is attributions(features).
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Networks ——Kewei Chenget. al

Step 3: modeling user proximity(omitting)

Finally, object function:

XW -U||z + a|W +—t U’LU
o (in | I + el Wllz,1 + tr(U'LU)

+

o 0P @ (AP — UVPU)||5

+?|ID” ® (A" —UV"U)||7,




Detection in Geo-Tagged Tweet Streams Data Mining Lab
——Jiawei Han Group

TrioVecEvent: Embedding-Based Online Local Event ‘% SRR =

Question: online local events detection by geo-tagged tweet stream.

Method: g

Cache :} Query ————®Tweet Stream

Online Clustering

Candidates

Embedding learner: map all the regions, hours, and keywords into sample space.

p——
S—
Embedding Learmner I

Embeddings

Features

-
' o

Online clustering: Bayesian mixture model

Classifier: detection events




TrioVecEvent: Embedding-Based Online Local Event
Detection in Geo-Tagged Tweet Streams
——Jiawei Han Group
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Part 1: embedding learner :

® Capturing the semantic similarities between tweets and further
group tweets.

® Revealing keywords appearing in different regions and hours
(background knowledge)

Idea:
1. Discretization(regions, hours, and keywords).

lax lakers dodgers beachlife jfke knicks mib rockaway
| international kobe ladders sand oSy airport melo yankees beachday
i losangeles bryant dogerstadium boardwalk e | international lebron mets howard_beach
‘ united bulls itfdb ocean - johnfkennedy durant yanks brighton
o 1. % E people cavs letsgododgers wave E burger basketball inning longbeach
—- tsa kevin game beachday ) terminal kobe yankee coney
* -;' ' sfo knicks dodgergame | pacificocean ~ john cavs ballpark atlantic
Y food clipper play santamonica M LAL LA kennedy theknicks pitch island
= flight lebron losdoyers pier sfo game jeter boardwalk
travel cp3 win wave flight lakers game long
“beach” "33.942, -118.409" “nba” “baseball” “beach” “beach” “40.641, -73.77¢° “nba” “baseball® “beach”

(a) Examples on LA (the second query is the location of the LAX Airport).

(b) Examples on NY (the second query is the location of the JFK Airport).
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——Jiawei Han Group
Idea:
2. learning embedding by Continuous Bag of Words Model (CBOW) [predicting one
unit given its context].

Method: given a tweet d, for any unit i, let v; be the embedding of unit i, then we model
the likelihood J

p(ild_) = exp(s(i,d_;)) /Zjexexp(s(j,d-;))

——computing the probability of words.

s(i,d_;) = viTZded_ivj/|d_i| —— similarity
Je = ~ZaecZicalogp(i Id_)——likelihood . s
‘ sl \/o
Ja = —logo(s(i,d_))) — ZX_iloga(—s(k,d_;))
——Cross entropy X -
Training the neural network by min cross entropy e Hidden Layer Output Layer
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Part 2: online clustering: Bayesian mixture model

Basic idea: every geo-topic cluster implies a coherent activity (e.g.,

protest) around a certain geo-location (e.g., the JFK Airport). location acts
as a geographical center that triggers geo-location observations around it
in the Euclidean space; while the activity serves as a semantic focus that

triggers semantic embedding observations around it in the spherical

space.




Detection in Geo-Tagged Tweet Streams Data Mining Lab
——Jiawei Han Group

TrioVecEvent: Embedding-Based Online Local Event ‘% SRR =

Station of variable and data formation

Data formation : each tweet d as a tuple (I4, x4), where I is location, x4 is the

D-dimensional semantic embedding of d

®_ X  the set of semantic embeddings for the tweets in Q
o Z
g L
|

the set of cluster memberships for the tweets in Q
the set of geo-location vectors for the tweets in Q
x  the set of k for all the clusters
™ e 4 k% the subset of x excluding the one for cluster k
"‘ A™?  the subset of any set A excluding element d
A¥  the subset of elements that are assigned to cluster k in set A

\ e xK  the sum of the semantic embeddings in cluster k

the sum of the semantic embeddings in cluster k excluding d
the number of tweets in cluster k
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a
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”
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n* the number of tweets in cluster k excluding d
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g ~ Dirichlet(.|a)

e 2k} ~ NIW(.[ng, Ao, So,v0) k=1,2,...,K
{g, ki) ~ ®(.Imy,Rp,c) k=1,2,...,K

z4 ~ Categorical(.|7r) de @

lg ~ N{-lﬂzdsgzd) de@

Xq ~ VMF( |y, ,kz,) de@

vMF from Wiki



https://en.wikipedia.org/wiki/Von_Mises%E2%80%93Fisher_distribution

Detection in Geo-Tagged Tweet Streams
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TrioVecEvent: Embedding-Based Online Local Event ‘@ SRISIRSNEE

——Jiawei Han Group

Part 3 :Classifier: detection events

Spatial unusualness quantifies how unusual a candidate is in its geographical region.
Temporal unusualness quantifies how temporally unusual a candidate is

Spatiotemporal unusualness jointly considers the space and time to quantify how

unusual a candidate is.
Semantic concentration computes how semantically coherent is.

Spatial and temporal concentrations quantify how concentrated a candidate C s

over the space and time.

Burstiness quantifies how bursty a candidate C is.

Finally, they train a binary classifier and judge whether each candidate is

indeed a local event
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